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Glossary 
 

Anomaly Detection Neural Network This type of network identifies deviations from normal 
behaviour within datasets. 

APSIM (Agricultural Production Systems sIMulator) A highly advanced simulator of 
agricultural systems which is used to model and simulate the biophysical processes in 
farming systems. 

Blockchain A distributed ledger in which records are linked together in a secure way 
through cryptography. 

Bounding Box A rectangular box used in machine vision and image processing that serves 
as a reference system for locating objects and defining their boundaries within an image. 

Coefficient of Variation A statistical measure of the dispersion of data points in a data series 
around the mean. 

Crop Modelling The use of computer-based models to simulate the growth and 
development of crops under varying environmental and management conditions. 

Data Annotation The process of labelling or tagging data with information that makes it 
usable for machine learning. 

Data Augmentation A technique used in machine learning to increase the diversity of data 
available for training models without actually collecting new data. 

De-bayering Also known as demosaicking, is a process used to convert raw image data 
from a Bayer filter mosaic into a full-colour image 

Detection Neural Network This type of network refers to an object detection model which 
is designed to identify and localize objects within an image or video. 

DSSAT (Decision Support System for Agrotechnology Transfer) A software application 
program that comprises crop simulation models for over 42 crops and is used to facilitate 
decision-making. 

Fertigation System A method of applying fertilizers soil amendments and other water-
soluble products through an irrigation system. 

Food Loss food loss definition based on FOLOU. 

Generative Models Models In machine learning that generate new data instances 
resembling training data. 

Image Annotation The process of manually or automatically adding metadata to an image. 

Merkle Tree A data structure used in computer science and cryptography to efficiently 
summarize and verify the integrity of large sets of data. 

MultiLayer Perceptron A Multilayer Perceptron (MLP) is a neural network with an input 
layer, one or more hidden layers, and an output layer, used for tasks like classification and 
regression, trained using backpropagation. 
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Multispectral Imagery An imaging technique that captures image data within specific 
wavelength ranges across the electromagnetic spectrum. 

Normalization The adjustments made to data to enable its comparison in different scales 
or formats. 

Object Detection A technology related to computer vision that deals with detecting 
instances of semantic objects. 

Phenological Surveys Studies that involve observing the stages of plant development over 
time. 

Polygon Annotation A method of image annotation that involves drawing polygons 
around objects within an image to create precise labels for machine learning and computer 
vision models. 

Reflectance The measure of the proportion of light or other radiation that is reflected off a 
surface. 

Supervised Learning A machine learning paradigm where the algorithm learns from 
labelled data. 

Thermal Imagery Imaging that detects and records the infrared radiation (heat) emanating 
from objects.  
YOLO (You Only Look Once) A state-of-the-art real-time object detection system that 
applies a single neural network to the full image which makes predictions with a single 
evaluation. 
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Executive Summary  
 

This document presents a comprehensive technical description of the innovative 
technological solutions based mainly on remote sensing, AI and crop modelling, proposed 
in the WP3 of FOLOU project to quantify the food loss in primary stages across various 
sectors such as vegetables, fruits, and horticultural crops. It is structured to ensure 
uniformity and coherence, facilitating ease of comprehension and follow-up, as all solutions 
adhere to the same layout besides, it provides an overview of the progress for each 
challenge, detailing the stages of development, from initial data collection to prototype 
testing and model development.  

The primary objective of WP3 is to develop and validate cost-effective and efficient 
technological tools that can replace traditional methods of quantifying food loss, which are 
often time-consuming and expensive. The tools developed are intended to enhance the 
accuracy and efficiency of food loss and production loss measurement on a large scale. 

The document is organized into distinct challenges each targeting specific types of food 
losses and commodities: 

1. Tractor-embedded video cameras for assessing food loss in vegetable crops (Dilepix-
T3.1) 

2. UAV-based high-resolution RGB for food loss assessment in apple (UGent-T3.2) 
3. Repeated multispectral and satellite data for production loss assessment in potato 

(UGent-3.2 & T3.3) 
4. Repeated multispectral and satellite data for production loss assessment in maize, 

corn, faba bean and sunflower (UNIVPM-T3.2 & T3.3) 
5. Automated fish egg sorting using multispectral camera technology in trout 

aquaculture (UNIVPM-T3.4) 
6. Blockchain technology implementation in mussel aquaculture (UNIVPM-T3.5)  
7. Market demand tools from social networks (CIRCE-T3.6) 

The project aims to produce robust, scalable, and easy-to-use tools for assessing food loss: 
Estimation of food and production losses, public blockchain to track food losses over the 
supply chain, and food prediction demand tool based on social networks. Hereunder an 
overview of the challenges :  

Task 
ID 

Organization Commodity Food Loss 
Category 

Technology Desired 
Outcome 

T3.1 Dilepix Vegetables 
(Cauliflower) 

Pre-harvest, 
Harvest losses 

Deep learning 
with tractor-
based RGB 
cameras 

Affordable 
tool to 
automatically 
measure yield 
and food 
losses in field 

T3.2 UGent Fruit 
(Jonagold 
apples) 

Pre-harvest, 
Harvest losses 

Deep learning 
with UAV-
based RGB 
data 

Methodology 
to estimate 
losses using 
UAVs in fruit 
orchards 

T3.2 
& 
T3.3 

UGent Vegetables 
(Potato) 

Production 
losses 

Crop growth 
model with 
multispectral 
and satellite 
data 

Automated 
method to 
estimate 
potato 



 

 
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not 
necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the 
European Union nor the granting authority can be held responsible for them. 

Page 12 of 70 

production 
losses 

T3.2 
& 
T3.3 

UNIVPM Maize, Corn, 
Faba Bean, 
Sunflower 

Production 
losses 

Repeated 
multispectral 
imagery (UAV 
or satellite-
based) 

Automated 
method to 
estimate 
production 
losses using 
imagery 

 
T3.4 UNIVPM Aquaculture 

(Trout) 
Production 
losses 

ML with 
multispectral 
cameras for 
infected egg 
detection 

Automated 
system for 
sorting trout 
fish eggs 

T3.5 UNIVPM Mussels Production, 
Pre-harvest, 
Harvest losses 

Blockchain for 
tracking losses 

Blockchain-
based 
platform to 
track and 
secure data 
on food losses 

T3.6 CIRCE Diverse 
(Grains, 
Fruits, Root 
Tubers, 
Meat, Fish) 

Surplus NLP and ML for 
social network 
data 

Models to 
predict food 
consumption 
from social 
network 
messages 

 

Table 1: Summary of Innovative Technologies Applied to quantify Food Losses in Primary 
Agricultural Production Under WP3. 
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Introduction 
 

The purpose of WP3 is to develop technological tools to measure and estimate food losses 
at the primary production stage across various agricultural sectors, including vegetables, 
fruits, and horticultural crops leveraging the revolutionary advancements in remote proxy 
sensing, as well as the cutting-edge capabilities of AI. The final goal is to develop methods 
that could partially replace the time-consuming and expensive manual sampling needed 
today to quantify food losses in the primary sector.  

 

 

Figure 1: Different categories of food losses in the primary sector distinguished and 
measured within the FOLOU project 

 

Within FOLOU, a definitional framework of food loss has been developed. Food losses are 
here categorized in three different categories (Figure 1): 

- Pre-harvest losses: plants, animals or other living beings ready to be 
harvested/caught/slaughtered but discarded; 

- Harvest losses: plants, animals or other living beings that are damaged during 
harvesting/ catching and are therefore discarded; 

- Post-harvest losses: plants, animals or other living beings that are harvested, but 
then are not used for food or treated as a waste stream 

Production losses can be defined as the difference between the attained yield – the yield 
when the crop/animal/other living being is ready to be harvested – and the attainable 
yield – the yield that could be expected from this crop/animal/other living being in the 
given conditions (Figure 2). In order to be consistent with EU regulations/approaches, 
production losses are not included int he definitional framework of FOLOU. However, 
production losses have a significant impact and when possible, will be assessed in FOLOU 
to have a comprehensive overview of its magnitude.  
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Figure 2: Schedule of production losses and food losses relative to the yield. 

 

The technological solutions under development in WP3 typically do not cover all categories 
of food losses. Furthermore, some technological solutions under development in WP3 do 
focus on Production losses rather than on Food losses.  Hereunder a table that give an 
overview of challenges and the category of loss. 

Challenge Type of loss 
Tractor-embedded video cameras for 
assessing food loss in vegetable crops 

Food loss 

UAV-based high-resolution RGB for food 
loss assessment in apple 

Food loss 

Repeated multispectral and satellite data 
for production loss assessment in potato 

Production loss 

Repeated multispectral and satellite 
data for production loss assessment in 
maize, corn, faba bean and sunflower 

Production loss 

Automated fish egg sorting using 
multispectral camera technology in trout 
aquaculture 

Production loss 

Blockchain technology implementation in 
mussel aquaculture 

Production loss & food loss 

Market demand tools from social networks Other 
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Figure 3: Geographic location of various collection sites. 
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1. Tractor-embedded video cameras for assessing food 
loss in vegetable crops (Dilepix-T3.1) 
 

1.1 Overview of challenge 
 

Application of deep learning (AI) technology to measure pre-harvest and harvest losses 
using high resolution imagery acquired from tractor based RGB cameras.  

Commodity: vegetables (tested for cauliflower) 

Food loss category: Pre-harvest losses | Harvest losses 

Technology: Deep learning based on tractor-based high-resolution RGB data 

Current stage: Under development: first dataset collected, annotation performed, deep 
learning network under construction 

Desired outcome: Affordable and easy-to-use tool to automatically acquire yield and food 
losses in the field 

 

Cauliflower is highly valued in Europe for its nutritional benefits and culinary versatility, 
making it a staple in health-conscious and diverse culinary markets. Rich in vitamins and 
minerals, it supports various diets and can be utilized in numerous culinary forms. Europe, 
particularly countries like Spain, Italy, and France, is a significant producer of cauliflower, 
contributing substantially to the region's agricultural economy. For instance, Spain 
produced approximately 150,000 tons of cauliflower in 2020, while Italy and France 
produced around 130,000 tons and 110,000 tons, respectively. Despite its adaptability, 
cauliflower cultivation in Europe faces challenges such as pest infestations, diseases, and 
environmental stressors. The combination of remote sensing and artificial intelligence in 
agriculture is becoming crucial for overcoming challenges. These technologies facilitate 
accurate monitoring and management of crop health and environmental conditions, as 
well as aid in the estimation of food loss. This leads to improved yields, reduced losses, and 
the promotion of sustainable production practices. 

 

1.2 Data Acquisition  
 

Focusing on vegetable crops, the use case of cauliflower was chosen for two reasons: 

● The adequate time of harvesting (autumn) 
● Availability of the crop in France and Spain. 

In collaboration with project partner Unilet, Dilepix accessed different cauliflower fields in 
Brittany, France, in Autumn 2023. Data acquisition has been performed at different stages, 
focusing on subsets of the entire plots:  

● Pre-harvesting (about 2 to 3 weeks before harvesting). 
● During harvesting (As the harvesting is done in several turns, this led to acquisition 

of partially harvested fields). 
● Post-harvesting 
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Figure 1.1. Clubroot disease which leads to growth issues.  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Cauliflower not harvested on time (left) Cauliflower left after trials (right). 

 

1.2.1 Measurements 
 

The current solution is centred on RGB cameras embedded on tractors. However, due to 
the difficulties related to logistics and tractor manoeuvrability in the fields, initial footage 
was collected by using a drone (DJI Mavic 2 Pro) flying at low altitude.  
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Figure 1.3. DJI Mavic Pro 2 drone flying over a cauliflower field. 

 

Multiple flights have been performed from mid-October to mid-November 2023: 

● On 3 different fields in Brittany, France. 
● Pre-harvesting, harvesting and post harvesting. 
● With multiple flying heights (2m, 3m, 10m…). 
● At several speeds (5km/h, 10km/h, more than 20km/h). 
● With different recording settings (Aperture, Shutter, ISO…). 

Flight speed has always been set according to the altitude, so that recorded data did not 
get blurry due to the motion speed. Recording settings have been set dynamically 
depending on the weather conditions. 

 
 

Data source Number of videos Number of images 

DJI Mavic 2 Pro  

 

Over 60 About 100 

Extra Equipment (e.g., 
smartphones, GoPro) 

About 40 Around 150 

 

Table 1.1. Overview of the acquired dataset. 
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1.3 Data annotation 
Dilepix has its own agronomy-oriented annotation tools. Data annotation was performed 
using the bounding box by marking each cauliflower manually. The data was recorded in 
video format, and then converted into still images. During the training phase, annotated 
images are extracted from the video on-the-fly. Semi-autonomous internal algorithms 
wered used to propagate those manual annotations on subsequent frames. Labelling 
occurred at the level of the entire image, so all plants in the images were annotated. A single 
category (Caulflower) was used for the annotations at this stage, but can be differentiated 
into quality levels in the future. An overview of the number of labels is provided in Table 1.2. 
This table also shows the amount of data between the training set and the testing dataset. 
To objectively evaluate the model's generalization performance, training and testing have 
been separated depending on where data were acquired, more precisely, from which plot. 
With this strategy, we kept one specific plot that the neural network has never seen for 
evaluation. 

Figure 1.4. Dilepix annotation tool where each cauliflower is labelled with a bounding 
box. 
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Dataset Quantity of 
Cauliflowers 

Quantity of images 

Annotated Cauliflowers (total) 4199 109 

Training 3538 87 

Evaluation 661 22 

Cauliflower dataset after 
augmentation 

18592 476 

 

Table 1.2. Overview of the number of annotated images and individual cauliflower 
plants 

 

1.4 Data augmentation 
 

Data augmentation is particularly useful when the size of the training dataset is limited or 
when the dataset lacks diversity. Common techniques for data augmentation used in the 
project include: 

● Geometric transformations: Rotations, translations, scaling, cropping, and flipping 
of images or data points. 

● Color and contrast adjustments: Changing brightness, contrast, saturation, and 
hue levels of images. 

● Noise injection: Adding random noise to images or data to simulate variations in 
real-world conditions. 

● Augmentation through generative models: Generating synthetic data using 
generative models such as Variational Autoencoders (VAEs) or Generative 
Adversarial Networks (GANs). 

These data augmentation techniques were applied to significantly increase the number of 
labels (Table 1.2). 

 

1.5 The proposed method 
 

To develop the method, first, a detection neural network will be developed that is capable 
to identify and localize objects within an image or video. Next, Dilepix plans to integrate 
different types of neural networks that could lead to different metric extraction, specifically, 
anomaly detection models with the capacity to identify patterns or instances that deviate 
significantly from normal behaviour within a dataset based solely on the characteristics of 
the input data. These models typically employ techniques such as autoencoders, variational 
autoencoders (VAEs), or generative adversarial networks (GANs) to learn a representation of 
normal data and detect deviations from this learned representation. 
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Networks are trained via the Dilepix technological stack based on common Deep Learning 
frameworks like Tensorflow or Pytorch. For performance purposes, trained models are then 
exported in formats that are more suited for an embedded usage. 

 

 

 

Figure 1.5. Synthetic view of the software architecture of Task 3.1. 

 

The development method is based on software modularity which ensure code reusability, 
allowing to leverage existing modules across different parts of the software or in multiple 
applications and facilitate incremental evolution of the solution 

● Module A will be dedicated to image analysis. In this module, Computer Vision and 
Deep Learning algorithms will be used. It aims to be as generic as possible to be 
reused for many applications and consequently many outputs. 

● Module B will be dedicated to metric extraction. This module aims to link generic 
approaches from Module A to the specific application of FOLOU regarding food loss. 
Module A and B can then be treated individually (image by image), or globally (at 
the field level, using an orthomosaic). By considering individual input, it will provide 
precise feedback on one specific part of the field. On the other hand, working 
globally might provide information at the scale of an entire field or geographical 
area.  

● Finally, computed metrics can be formatted in Module C to suit then end-user needs 
as good as possible.  

 

1.6 Expected outcomes 
 

Running these modules on a dataset taken on one single moment results in an estimate of 
the number of vegetables (in this case cauliflower) present at that time in the field. By taking 
this measurement before and after harvest and comparing the results, we can calculate the 
yield and the combination of pre-harvest, harvest and post-harvest losses. We are still 
exploring the optimal timing (minimizing measurement costs, and maximizing 
information) as well as the need to differentiate the cauliflower in several classes (i.e., suited 
for food consumption; not suited for food consumption) 

 

1.7 Overview of the progress 
 

Table 1.3 shows the current stage and progress of this task. 
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 Functionality State 

Module A: Computer 
Vision unit 

Detection neural network Under development 

Anomaly neural network Not yet started 

Module B: Metric 
extraction 

Homogeneity metric Done 

Additional metrics Not yet started 

Module C: Output format Single output 
representation 

Done 

Cartography representation In progress 

 

Table 1.3. Overview of the progress of Task 3.1. 

1.8 Key successes and challenges 
To conclude, the key successes and challenges of the activities performed until June 2024 are 

presented below. 

Key successes: 

Data is collected 

Annotation started 

Prototyping is ongoing 

 

Challenges: 

Working with tractor, the reason why it was replaced by the drone. 

Find the right crops 
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2. UAV-based high-resolution RGB for food loss 
assessment in apple (UGent-T3.2) 

 

2.1 Overview of the challenge  
Commodity: Fruit (currently tested on Jonagold apples) 

Food loss category: Pre-harvested losses | Harvest losses 

Technology: Deep learning on high-resolution RGB data acquired with UAVs 

Current stage: Under development: First datasets collected; data annotation performed; 
deep learning network under development. 

Desired outcome: Methodology to apply UAVs to estimate pre-harvest and harvest losses in 
fruit orchards. 

Apples are crucial for a healthy diet, rich in vitamins, fiber, and antioxidants. In Europe, major 
apple producers include Poland, Italy, France, and Belgium, significantly boosting the 
agricultural economy. For instance, in 2020, Poland was the leading producer with about 
3.4 million tons of apples, followed by Italy, France, and Belgium. Despite its productivity, 
European apple farming faces challenges like pest infestations, diseases, and climate 
changes. To address these issues, the integration of remote sensing and artificial 
intelligence has become essential. These technologies enable precise monitoring and 
management of orchard health and estimate the food loss. Hence this challenge is focusing 
on the application of deep learning (AI) technology to measure pre-harvest and harvest 
losses using high resolution imagery acquired from UAV-based RGB cameras of fruit crops. 
The method under development must be able detect and count damaged fruit to directly 
estimate the yield, pre-harvest and harvest losses. Apart from the deep learning 
methodology, we also need to explore the most optimal viewing angle and measurement 
condition. 

 

 

2.2   Data acquisition  
 

UAV flights were performed to collect very high resolution RGB imagery from five 
Jonagold orchards in Flanders and northern France. The Jonagold variety was selected 
because it is of high economic importance and because it is sensitive to scab disease 
which will lead to potential pre-harvest losses. 

2.2.1 Material & equipment  
 

UAV data: A DJI M350 UAV equipped with a high-resolution camera (DJI Zenmuse P1 with 
50mm lens, 45MP camera). Images were collected over the five different orchards in 
September 2023, close to the time of harvest. In each orchard, the flight height was 12 m, 
and images were collected from 5 different viewing angles (see further). At this altitude, the 
imagery has a Ground Sampling Distance (GSD) of 0.12 cm.  

Ground truth reference data: In each orchard, 30 trees were randomly sampled, collecting 
the number of good (marketable) apples, apples fallen on the ground, and damaged apples 
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(non-marketable) on the tree. Also, the exact location of the tree was recorded with a high 
precision RTK GNSS system. 

   

  

 

 

 

 

 

 

Figure 2.1. Equipment for high resolution UAV acquisition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. Tree sampling. 

 

2.2.2 Protocol  
 

Standard UAV acquisitions position the camera to look straight down (nadir viewing, 90° 
angle relative to the horizon). However, a relatively small part of the canopy is then visible, 
with the largest part being occluded from the view. An initial test revealed that the 
maximum viewing angle still allowing to view the full tree and the ground was 50°. 
Therefore, we collected dataset having a nadir view, 70° and 50° viewing angle. For the 50° 
and 70° viewing angles, we collected data from both sides of the tree line, so we can see the 
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full canopy of the tree. Further image processing will reveal which viewing angle or 
combination of angles is most suited. 

 

 

Figure 2.3. Different viewing angles for high resolution RGB acquisitions. 

 

 

 

Figure 2.4. Samples of images from different angle views.  

 

2.2.3 Outcomes of data acquisition  
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A total number of 8204 images were collected over the five orchards; an overview 
per orchard is given in Table 2.1. 

 

High-Resolution 
RGB datasets 

Localisation Resolution Number of images 

Dataset 1 Michelbeke (Belgium) 8192x 5460 2456 

Dataset 2 Sint Gillis Waas (Belgium) 8192x 5460 2317 

Dataset 3 Zottegem (Belgium) 8192x 5460 1757 

Dataset 4  
Pitgam (France) 

8192x 5460 829 

Dataset 5 8192x 5460 845 

 

Table 2.1. High resolution RGB dataset statistics 

 

2.2.4 Data preparation  
 

Data preparation before annotation  

To prepare our datasets for annotation, relevant subregions were extracted from the full 
image. Each subregion has a size of 3500x4000 pixels (14 MP). Subregions were selected to 
contain areas of the orchard canopy that were likely to contain damaged apples, since 
damaged apples are sparse and not uniformly distributed throughout the orchard. This 
approach allows us to avoid annotating unnecessary parts and saves time and resources, 
especially given the size of the images, potential overlap, and the overall size of our datasets. 
Python scripts were created in order to cut the relevant region from the raw image, save 
the chunk and the coordinates of the relevant region in a text file. 

 



 

 
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not 
necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the 
European Union nor the granting authority can be held responsible for them. 

Page 27 of 70 

 

 

Figure 2.5. Selection of relevant region and recording the coordinates in text file. (Top 
= complete image; cut-out left = selected region for annotation; text right = reference 

format in text file format) 

In the Figure 2.5. shows extracting relevant subregions from the high-resolution RGB 
images captured by UAVs, focusing specifically on areas likely to contain damaged apples. 
This targeted approach, facilitated by custom Python scripts, ensures efficient processing 
and maximizes the relevance of the data for annotation. The information of the  coordinates 
of the relevant region and the name of the raw image  are stored in a text file. 

Data preparation after annotation 

To expand the size and diversity of our datasets, data augmentation techniques will be 
implemented. This step is indispensable for the development of robust deep learning 
models, as they rely on large datasets to achieve optimal performance. Gaussian filter, 
mirror and flipping are among the potential annotation techniques that will be employed. 

 

2.3   Data annotation 
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Annotation in high-resolution UAV images is a time-consuming and labor-intensive 
process. To manage this, we outsource this task to specialized annotation service providers. 
An annotation guide document was created to standardize and streamline this process. The 
annotation is done manually which affects the efficiency and time required for annotation. 
Concerning the annotation, polygon technic is preferred over bounding boxes, since this is 
more accurate and provides grain fine details of the annotated object especially in the case 
of complex shapes. However, marking polygons is also more time-consuming, which is why 
we will later include a comparison of the model performance of the polygons vs the 
bounding box techniques. 

The annotation uses 3 main classes (Fig. 2.6): 

• Class 1: Good apples 

Healthy apples (marketable) that look good and do not have any spots, lesions, or 
reduced size. The level of ripening of apples does not matter. 

• Class 2: Fallen apples 

Apples on the ground, in whatever stage 

• Class 3: Damaged apples 

Damaged (unmarketable) apples include apples with spots, lesions or growth 
problems. In this class, an attribute concerning the level of visibility is also added. 
This attribute will allow us to improve the angle for more visibility and study the 
behavior of the models regarding the visibility of the apples.  

• Class 4: Apple (uncertain): We cannot decide if it is an apple or not. 
• Class 5: Fallen apples (uncertain): The scenario where we are uncertain whether it is 

a fallen apple or something else. 
• Class 6: Damage (uncertain): Not clear if the apple is damaged or not. 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 2.6. Sample images of the different classes. 
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Based on a review on supervised deep learning research for fruit detection, a target of 
40000 annotations was set. The annotation process is currently in process, an example of 
a first batch of this annotation is given in Fig. 2.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7. Sample of image annotation with the classes and visibility attribute. 

 

2.4 The proposed method  
 

Deep learning architectures, such as YOLO (You Only Look Once) and Faster R-CNN 
(Region-based Convolutional Neural Network) will be explored for the detection of 
damaged apples in high-resolution RGB UAV images. 

The method uses the following workflow: 

• Stage 1: Development of model that is capable of detecting healthy and damaged 
apples with high accuracy. 

• Stage 2: Comparison of datasets under different viewing angles, and 
recommendations (optimization) of viewing angles and image settings 

• Stage 3: Upscaling of method to field and regional scale (variations in canopy, 
density, Covering other variety of apples and diseases) 
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Each stage in the workflow above involves iterative refinement, algorithmic adjustments, 
fine-tuning, and continuous experimentation which are integral parts of this ongoing work. 

The models will be trained and tested on different (independent) datasets to verify model 
robustness. 

 

2.5   Expected outcomes  
 

The expected outcome is the development of an automated method based on high 
resolution UAV RGB images and deep learning to directly measure the pre-harvest and 
harvest loss in apple orchards. The solution can be also generalized to other type of orchards 
with some adjustments.  

 

2.6   Development states 
 

Main Tasks Subtasks State 

Remote sensing / Field 
campaign 

High resolution RGB data 
acquisitions 

Done (first year) 

Data acquisition Done (first year) 

Data field analysis  Done (first year) 

Data processing  Data preprocessing Done 

Data annotation  In progress 

Data augmentation   
 

In progress 

Development of object 
detection algorithms using 
nadiral view. 

Prototyping Under development 

Model development 
 

Not yet started  
 

Model evaluation Not yet started  
 

Development of object 
detection algorithms using 
multiple views 

Prototyping Not yet started  
 

Developing the model 
 

Not yet started  
 

Testing the model 
 

Not yet started  
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Development of food loss 
estimation algorithm 

Development of food loss 
estimation algorithm 

Not yet started  
 

 

Table 2.2. Overview of the progress of Task 3.2. 

2.7  Key successes and challenges 
In conclusion, the following summarizes the key successes and challenges of the activities conducted 

up to June 2024: 

Key successes: 

Data is collected from various orchards(diverse and rich data) 

Preprocessing is done 

Annotation is ongoing 

Prototyping is ongoing 

 

Challenges: 

Difficulty to find collaborative farmers especially in the period of pre-harvesting and harvesting. 

Find damage crops. 

Preprocessing our huge dataset 

Annotation of the images: we should deal with : 

 Big images  

Complex background 

Occlusion 

Size and the shape of the apples & the damage 
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3. Repeated multispectral and satellite data for 
production loss assessment in potato (UGent, T3.2 & 
T3.3) 

3.1  Overview of the challenge  
 

Commodity: Potato 

Food loss category: Production losses 

Technology: Crop growth model, fed with data from multispectral and multitemporal 
datasets 

Current stage: Ongoing; Experimental trial was carried out in 2023 and will be repeated in 
2024 and possibly 2025. Similarly, large-scale data collections are planned for 2024 for 
satellite data input.  

Desired outcome: Automated method estimating production losses for potato based on 
satellite or UAV data.  

Belgium is a notable potato producer within Europe, contributing significantly to the 
region's agricultural output. In 2020, Belgium produced approximately 4.5 million tons of 
potatoes. These potatoes are essential for both the local diet and culinary uses, valued for 
their carbohydrate and potassium content. Despite its success, potato farming in Belgium 
faces several challenges, including diseases, pests, and variable climate conditions. To 
address these difficulties, advancements in remote sensing and artificial intelligence are 
increasingly being utilized. These technologies enhance the monitoring and management 
of crop health and environmental factors, leading to improved management practices, 
better yields, and reduced losses. 

 

3.2 Data acquisition 
An experiment was set up in the experimental farm of Bottelare (Flanders, Belgium) in the 
2023 growing season. This trial explored differences between potato due to biostimulants 
aiming to improve root growth, drought resistance and yield (see further). 

Two types of data were collected from this trial: 

• Remote sensing data: multitemporal multispectral and thermal imagery 
• Field data measurements: Including pre-harvest and harvest sampling, fresh and 

dry weigh of leaves and stem, roots and tubers, size and number of the tubers. 

3.2.1  Material & equipment  
Field trial: The experimental design chosen for the trials is a randomized complete block 
design (RCBD), consisting of 6 treatments(Humifirst, seaweed, alphasol, delphan+, 
quantum, and irrigation)and one untreated treatment (control) arranged in three blocks, 
with each block containing 14 plots. The trial comprises a total of 42 elementary plots. 
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Each plot measures 12m in length and 3m in width, resulting in a total trial area of 36m x 
42m = 1512m². 

 

Figure 3.1. Description of trial Map treatments. 

 

Pests and pathogens were monitored and treated according to good agricultural practices 
and the overview of the treatments will follow later. 
During the preharvest period, the average of 10 leaves per plot was measured by SPAD for 
chlorophyll content measurement.  

During midharvest(24th of august 2023), four samples were taken from each plot. These 
samples were then separated into leaves and stems, and roots and tubers. The weight of all 
parts was measured directly for each treatment. The size and number of tubers were 
measured using the flat sizing template. The dry weight of each sample was determined, 
after steaming at 65°C for one week.  

The harvest was carried out manually due to adverse weather conditions, as the soil was 
wet from the rain. Consequently, 50% of our tubers remained underground. After the 
harvest, the tubers were sorted by size, number, fresh weight, and dry weight. Additionally, 
we recorded the under-water weight (UWW) and dry matter (DM) yield. We aimed to 
identify the most effective biostimulant to produce high-quality potatoes within the 
optimal market size of 35-50 mm, considering dry matter content and treatment efficacy to 
enhance marketability and productivity while avoiding losses of potatoes outside this size 
range. 

 

Remote sensing protocol : Aerial imagery were captured with a DJI Mavic 3 MS and with a 
DJI Matrice 600 Pro UAV equipped with a multispectral (MicaSense RedEdge Dual MX 
Camera system) as well as a thermal camera (Teax ThermalCapture): Eleven flights were 
conducted over the field between June 12, 2023, and September 15, 2023. 

 

Drones 
 

Equipment Dates 

DJI Matrice 600 
Pro UAV 

Multispectral: MicaSense RedEdge 
Dual MX Camera system) 

18/07/2023 
26/07/2023 
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 Thermal: Teax ThermalCapture 09/08/2023 
14/08/2023 
21/08/2023 
31/08/2023 
08/09/2023 
15/09/2023 

 

Mavic 3 MS  
RGB camera  20 MP 
 

12/06/2023 
26/06/2023 
04/07/2023 
18/07/2023 
14/08/2023 
21/08/2023 
08/09/2023 

 
Multispectral camera 
 
 

 

Table 3.1. Data Acquisition Equipment & Material 

 

Permanent ground control points (GCP) were positioned in the experimental area. Before 
each flight, a reference grey panel was measured with the UAV cameras. Additionally, 6 gray 
referent targets were placed near the target area. A plate covered with aluminum foil was 
positioned in the view of the flight path to measure incoming longwave radiation. Flights 
were performed under sunny conditions (if possible) and at a flight altitude of 50m, with 
75% horizontal and vertical overlap (for the thermal images). 

 

Figure 3.2. Left: white reference panel captured in band 5 (642 nm–658 nm) of the 
MicaSense dual camera system. Right: Aerial image of the 6 RRTs captured in band 2 

(459 nm–491 nm). 

 

3.2.2 Data preparation  
 

Remote sensing data preparation: The UAV images are processed with Agisoft Metashape 
to generate orthomosaic images. These orthomosaic images are then imported into Matlab 
R2024, where we performed calibration and necessary corrections using empirical line 
methods. This calibration ensured that the images accurately represented the field 
conditions.  

Finally, various vegetation indices, such as NDVI (Normalized Difference Vegetation Index), 
SAVI, GNDVI…. are calculated to assess crop health, vigor, and stress levels. These detailed 
analyses provide valuable insights into the overall condition of the crops throughout the 
growing season. 
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3.3   The proposed method  
 

This section outlines the integration of remote sensing (RS) data with the crop growth 
model (APSIM) through the use of a radiative transfer model (PROSAIL). The APSIM model 
requires inputs such as soil properties, climate data, and crop management practices. 
Inverse modeling uses RS data, including vegetation indices and soil moisture estimates, 
and SPAD measurements for chlorophyll content to calibrate APSIM. PROSAIL, a radiative 
transfer model, simulates canopy reflectance to estimate leaf and canopy parameters, 
which refine APSIM inputs. Actual yield simulations reflect current conditions, while 
attainable yield simulations assume optimal conditions. This integration minimizes non-RS 
data input, enhances yield prediction accuracy, and improves crop management and 
productivity. 

In 2024 and 2025, we will sample regular growing fields of potato, in collaboration with 
project partner Warnez. In these fields, a similar approach will be used to estimate 
attained and attainable yield, but then based on satellite data of vegetation development 
from Sentinel-2, complemented with other datasets concerning the soil type (publicly 
available datasets), weather conditions and possible soil moisture content (from Sentinel-
1). The field sampling during the growing season includes the reference sampling of 
chlorophyll content and leaf area to verify whether the PROSAIL-estimation of these key 
variables using the Seninel-2 data is correct. At the end of the growing season, samples of 
potato yield and potato yield losses will be collected here. 

3.4 Expected outcomes  
 

We aim to integrate UAV and satellite remote sensing data in a radiative transfer model 
and a crop growth model to predict yield and production losses and identify areas for 
improvement. This integrated approach allows us to make data-driven decisions to 
optimize biostimulant use, irrigation, and other agricultural practices. Ultimately, our 
objective is to correctly predict production losses, but also to be able improve the quality 
and quantity of potato harvest, ensuring that we meet market demands and reducing the 
incidence of suboptimal or wasted produce. 

 

3.5  Current stage 
 

Main Tasks Subtasks State 

Remote sensing / Field 
campaign 

Multispectral data 
acquisition 

Done (first year) 

Data field analysis  Done (first year) 

Data preprocessing Done (first year) 
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Data processing  Data annotation  In progress 

Data augmentation   In progress 

Prototyping Under development 

Development of crop 
modelling 

Development of crop 
modelling 

Not yet started  

Development of production 
loss estimation algorithm 

Development of production 
loss estimation algorithm 

Not yet started 

 

Table 3.2. Overview of the progress of the method development 

 

 

3.6  Key successes and challenges 
In conclusion, the following summarizes the key successes and challenges of the activities conducted 

up to June 2024: 

Key successes: 

Integration of advanced remote sensing technologies.  

 Field data collection and managements. 

Innovative data analysis and modelling (predictive crop growth modelling and vegetation indices 

calculations). 

Potential for yield improvement and loss reduction. 

Challenges: 

Difficulty to find collaborative farmers especially in the. 

Adverse weather conditions (impact on harvest and yield). 

Data collection and processing complexity (High volume and variety of Data, calibration and accuracy). 

Technological and methodological constraints (Model development and validation, combining field data and RS 

data together in order to estimate the food losses). 

Storage and Post Harvest management (preventing Post harvest losses and integration of new parameters).  
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4. Repeated multispectral and satellite data for 
production loss assessment in maize, corn, faba 
bean and sunflower (UNIVPM-T3.2 & T3.3) 

 

 

4.1   Overview of the challenge 
 

Commodity: Maize, corn, faba bean, sunflower 

Food loss category: Production losses 

Technology: Repeated multispectral imagery (UAV or satellite-based) to estimate 
production losses 

Current stage: Under development; field experimental trial is ongoing, data have been 
collected for one season and will continue to be collected in the upcoming seasons; method 
for production losses under development 

Desired outcome: Automated method that estimates production losses of selected crops 
using repeated UAV or satellite imagery. 

 

Maize, corn, faba beans, and sunflowers are crucial crops in Europe, essential for human 
nutrition and animal feed. Leading producers include France, Romania, Hungary, the UK, 
Germany, Ukraine, Russia, and Bulgaria. Italy is also a significant player, particularly in maize 
and sunflower production, with over 6 million tons of maize and 2 million tons of sunflower 
seeds harvested annually. These crops face challenges like pest infestations and climate 
variations. The integration of remote sensing, crop medeling, and AI, will allow improving 
crop health monitoring, optimizing resource use, and increasing yields. Moreover an 
accurate  production loss can be estimated.The research team of Università Politecnica 
delle Marche (UNIVPM) is focusing on the agronomic perspective, considering production 
losses (PL) as the ‘gap between actual crop yield (attained yield) and potential crop yield 
(attainable yield)’ (Pérez-Méndez et al., 2021). Crop yield loss is due to the action and 
interaction between biotic (e.g., pests, insects) and abiotic stresses such as drought and 
heat waves (Ramegowda and Senthil-Kumar, 2015). Both biotic and abiotic stresses can be 
limited by various agronomic management practices, that include irrigation, pests and 
insects control and soil tillage regimes. With the aim to detect and quantify the gap 
between actual crop yield and potential crop yield, an open field trial was set up at the 
‘Pasquale Rosati’ experimental farm of UNIVPM located in Agugliano, Province of Ancona, 
Italy (Error! Reference source not found. 4.1 (left)).  

4.2  Data acquisition  
 

4.2.1 Material & equipment 
 

Three different agronomic management types subjected to two soil tillage regimes are 
tested: 
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a) ‘Business-as-usual’ (BAU) is the locally common management approach 
representative in terms of irrigation, nutrition, and pest control. In this management, no 
irrigation is applied, standard nutrient management is conducted, and pest control 
followed the Integrated Pest Management principles of the Marche region. 

b) The ‘zero-stress’ (ZST) management is designed to entirely prevent biotic and abiotic 
stresses throughout the entire growth cycle. This is achieved by implementing a 
fertigation system to deliver the optimal amount of water and nutrients (which can also 
be applied for canopy cooling), along with a pest management control schedule. The 
result can be considered close to the ‘attainable’ yield. 

c) The ‘enhanced conventional’ (ECV) management includes supplemental irrigation, 
standard nutrient management, and pest control according to the Integrated Pest 
Management principles of the Marche region. 

While the comparison between BAU and ZST managements would allow to assess the gap 
between actual crop yield and potential crop yield, ECV will address crop adaptation to 
climate change and has the potential to be the most readily adopted by farmers. The two 
different tillage regimes are as follows: 

a) Ploughing, the most widespread tillage at national level and within the 
Mediterranean area (Alcántara et al., 2016). 

b) Minimum tillage, a more conservative and sustainable option compared to ploughing 
(Xiao et al., 2023). 

The three management options and the two tillage regimes will be tested on four of the 
most representative crops of Mediterranean cropping systems (Cramer et al., 2018) in a 4-
year rotation scheme: wheat (Triticum turgidum L. subsp. durum (Desf.) Husn. ), sunflower 
(Helianthus annuus L.), faba bean (Vicia faba L var. minor) and maize (Zea mays L.). 

The three management systems (i.e., BAU, ZST, and ECV) have been assigned to a single 
nearby field, homogeneous in terms of previous management and soil characteristics, each 
measuring 120 × 30 m. Within each field, two tillage regimes (main plot, 15 × 120 m) and four 
crops (sub-plots, 4 × 8 m) were arranged according to a split plot experimental design, 
replicated thrice. Therefore, the total number of subplots is 72 (3 fields × 2 tillage regimes × 
4 crops × 3 replicates). 

To upscale (e.g., basin, territorial, regional scale) the results of ground sampling and drone 
monitoring, a validation of the satellite data is necessary. The validation will be carried out 
by planning simultaneous flights over the “calibration” and the “plot field” (Figure 4.1 (right)).  

The Calibration trial (43°32’44.1” N 13°22’12.3” E) is managed according to BAU management 
and is shown in Figure 4.1. The choice of 1 ha area was driven by the need to acquire an 
adequate number of satellite images for validation. 
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Figure 4.1. A map of the experimental design of the macro-plot trial (43°32’39.8”N 
13°21’39.5”E) (left) and the Calibration trial (43°32’44.1” N 13°22’12.3” E) (right). The 

macro-plot trial shown in the figure is an example of rotation in a phase where all four 
crops are simultaneously in the field. BAU: Business-As-Usual, ZST: Zero Stress 

 

The trial was set up in the central block plots of the open field trial described in the previous 
subsection. Soil moisture was measured with LoRaWAN technology and irrigation was 
scheduled.  

 

4.2.2 Remote sensing data collection  
The data collection campaign relies on different kinds of sensors: 

a) UAV-based multispectral imagery  
1. Micasense Altum 
2. MAIA S2 and MAIA WV2 

b) Satellite-based multispectral imagery  
1. Sentinel-2 
2. Planet 

Micasense Altum 

The Altum sensor integrates a radiometric thermal camera with five narrow bands, 
producing thermal, multispectral, and medium-resolution imagery in a single flight. Altum 
is equipped with Direct Light Sensor (DLS). This sensor is installed on a DJI M200 UAV for all 
the flights. 
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 Figure 4.2 shows an example of spectral index over the test and calibration field. 

 

Figure 4.2. Left: Spectral Index (NDVI) over wheat and faba bean on the test field, 
Right: Spectral Index (NDVI) over wheat and faba bean on calibration field (Feb 2024). 

 

Maia S2 and MAIA WV  

MAIA is a multispectral camera designed and developed by SAL Engineering and Eoptis to 
be used on board UAVs or RPAS, entirely made in Italy. MAIA is composed of 9 1.2 MP sensors 
(9 monochromatic sensors with related bandpass filters in the MAIA S2 filter-set, and 8 
monochromatic + 1 RGB in the MAIA WV filter-set) to acquire images in the VIS -NIR 
spectrum. MAIA WV has the same wavelength ranges as DigitalGlobe's WorldView-2™ 
satellite, from 395 nm to 950 nm. MAIA S2 has the same wavelength ranges as ESA's 
Sentinel-2™ satellite, from 433 to 899.5 nm. The systems are equipped with an Incident light 
sensor (ILS) to measure and correct for ambient radiation. The MAIA is also installed on the 
DJI M600 Pro UAV.  

 

Figure 4.3. Left: MAIA Sensor. Right: Incident Light Sensor (ILS). 

PlanetScope 

PlanetScope (by Planet) is a constellation of approximately 130 satellites, able to image the 
entire land surface of the Earth every day (a daily collection capacity of 200 million km²/day). 
PlanetScope images are approximately 3 meters per pixel resolution. The PlanetScope 
satellite constellation consists of multiple Dove satellites.  

Figure 4.4 is an example of the false color composite of the Agugliano area (test field and 
calibration field). Red colors indicate green vegetation, with denser and healthier 
vegetation showing a more bright red color. 
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Figure 4.4. Example of acquisition using NRG representation of the Agugliano site. 
Data: Planet – 8 band (instrument: PSB.SD). Acquisition date: 2024-05-14T10:04:09 

 

Sentinel-2 

The Copernicus SENTINEL-2 mission includes two polar-orbiting satellites, S2-A and S2-B, 
which are arranged in the same sun-synchronous orbit, positioned 180° apart. This mission 
is designed to observe changes in land surface conditions. It features a broad swath width 
of 290 kilometers, and high revisit time (10 days at the equator with one satellite, and 5 days 
with 2 satellites under cloud-free conditions which results in 2-3 days at mid-latitudes) to 
support monitoring of Earth's surface changes.  

 

4.2.3 Protocol  
 

Remote monitoring 
 
Combined with surveys carried out on physiological status and at harvest, flights by DJI 
Matrice 600 Pro drone with two multispectral maya S2 and WV2 cameras and by DJI 
Matrice 200 drone with the Altum sensor are performed.  These flights last all the growing 
season with a frequency of 1 flight/week.  
Permanent ground control points (GCPs) have been deployed over the areas of interest and 
reflectance panels are also used to generate geometrically and radiometrically corrected 
data. 
The type of data used for validation of the drone-collected data will be derived from 
Sentinel-2 and PlanetScope remote sensing images.  
 
Soil analysis 
 

Before the main soil tillage different profiles (three for each management) are excavated 
and classified. These profiles will assess soil organic matter content at baseline (T0) and 
monitor its dynamic over time. Chemical and physical soil status will be evaluated through 
composite and core sampling at fixed depths after pedological characterization. This 
sampling establishes the baseline for future soil monitoring campaigns. Both organic and 
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mineral soil layers will be sampled and analyzed regularly (e.g., annually) to detect potential 
chemical changes. The following variables will be monitored at varying frequencies, 
calibrated for each: 

a. Soil water content: A fertigation system and a network of soil moisture sensors were 
installed. A nearby weather station measures main agro-meteorological parameters daily. 

b. Crop Phenology: Ten plants/plot, showing regular growth since emergence, will be 
selected. They'll be geo-referenced, individually tagged, and observed weekly (from May for 
summer crops, and November/December for fall/winter crops) using BBCH scale for 
sunflower and faba bean, Ritchie’s scale for maize, and Zadoks’ scale for wheat. 

c. Crop physiological status: Monthly surveys will monitor crop status, becoming weekly at 
critical stages like flowering. Gas exchanges will be analyzed using an infrared gas exchange 
analyzer during maximum photosynthetic activity (12:00 h - 14:00 h, 1000–1800 μmol m−2 
s−1). Chlorophyll content and leaf area index will be estimated using SPAD-502 and a 
ceptometer, respectively. 

d. Yield and yield components: Yield components will be determined on the ten plants used 
for phenological surveys: 

1. For maize: plant density, ears per plant (and per square meter), rows per ear, grains 
per ear, and 100-grain weight. 

2. For sunflower: plant density, heads per plant (and per square meter), achenes per 
head, and 100-grain weight. At flowering, flower numbers will be counted 
destructively on five heads per plot. 

3. For wheat: tiller density, spikes per plant (and per square meter), spikelets per spike, 
kernels per spikelet, and 100-kernel weight. 

4. For faba bean: plant density, pods per plant (and per square meter), seeds per pod, 
and 100-seed weight. 

4.2.4 Outcomes of data acquisition  
 

Starting from the acquired data it will be possible to have: 

• Soil analysis 
• Time-series of Soil volumetric water content, temperature and salinity using the 

drill&drop probes 
• Time-series of Phenology measurements (set of regular reports) 
• Time series of Crop physiological status  (set of regular reports) 
• Yield and yield components 
• High resolution remotely sensed time-series from UAVs (multispectral orthophotos) 
• Medium/Low resolution remotely sensed time-series from satellites (multispectral 

images) 
 

4.2.5 Data preparation  
 

Proximal acquired data have been archived and are arranged in spreadsheets. Remote data 
are being processed through different pipeline according to the payload. 

Data from Micasense Altum are directly processed through state of the art software (i.e. 
Pix4D, Metashape,....) 
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Data from MAIA S2 and WV2 require a pre-proccesing. Here is the list of main pre-
processing tasks: 

• Geometric correction and generation of ‘undistorted’ images through the 
calibration parameters that are included with each sensor (enabled as a tick; 
otherwise disabled).  

• Coregistration (or Stitching) based on a reference image for image stitching of each 
band, with pixel-by-pixel convergence (enabled as a tick; otherwise disabled).  

• Radial radiometric correction: This is active as a tick, and it corrects the border effects 
of the image (usually darker pixels) that can arise due to lens curvature.  

• Radiometric correction: This is based on the following selectable options in the field 
‘Radiometric’ 

Data of Sentinel-2 (L2A) are fetched using a custom python script that invokes third party 
APIs. 

 

4.3 The proposed method  
 

The attainable and attained yield will be evaluated using two main approaches. One model 
will be data-driven considering weather data and vegetation index-based time-series. We 
will extend our previous work “Time Series from Sentinel-2 for Organic Durum Wheat Yield 
Prediction Using Functional Data Analysis and Deep Learning” (Mancini et al., 2024) to 
establish a correlation between observed variable from remotely sensed data (UAVs and 
satellites) with ground measurement (at the end of the season). The use of different field 
with similar crop and management observed at different scale is a key point to establish a 
way to map areas with different performances in terms of nitrogen content and the 
potential yield. The fields are monitored not only using remote sensing devices, but also 
probes installed in the soil that can support the understanding of water availability for roots. 
Starting from the analysis of time series it is also possible to evaluate the different way to 
reach the final maturation state that is another key point. Different kind of images will be 
used ranging from high-resolution imagery collected using UAVs to satellite platforms with 
pixel size that ranges from 3 to 20m. 

Another approach will consider crop simulation models which use biophysical parameters 
to simulate crop growth and yield. The model chosen is the Decision Support System for 
Agrotechnology Transfer (DSSAT). DSSAT integrates modules on crops, climate and soil 
models to simulate the crop growth cycle and predict the impact of different environmental 
and agronomic management factors on production trends (Jones et al., 2003). The objective 
is to combine remotely sensed data from UAVs and satellite with the crop model to improve 
model calibration and the accuracy of estimates through a data assimilation process. 

The integration of a radiative transfer model with a crop model, using a canopy structure 
variable such as the Leaf Area Index (LAI), enables the simulation of variables like reflectance 
in the VIS and NIR range across the entire spatial domain at any date when remotely sensed 
reflectance data are available. By comparing these simulated reflectance values with actual 
measurements, it is possible to re-estimate certain model parameters or initial conditions. 
This process enhances the accuracy of simulating state variables related to reflectance, 
particularly LAI. Since crop yield is highly dependent on intercepted radiation, which in turn 
is closely linked to LAI, refining the LAI simulation leads to more precise yield predictions. 
This optimization process, known as “assimilation”, allows for localized adjustments in the 
crop model, thereby improving its overall performance (Launay and Guerif, 2005). 
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4.4 Expected outcomes  
 

The objective is to enhance the outcomes of ground surveys by incorporating satellite and 
drone monitoring images. Tailored analyses will be conducted, with a particular emphasis 
on estimating production loss (i.e., the difference between the attainable and attained yield) 
and subsequent yield variability based on the crops under evaluation. This entails 
measuring both a) pre-harvest loss, such as natural seed drop, and b) harvest loss, which 
includes mechanical losses incurred during harvesting processes.). This initiative builds 
upon recent advancements in the field and aims to refine and extend existing 
methodologies to estimate food loss. 

 

4.5 Development states 
 

Main Tasks Subtasks State 

Remote sensing / Field 
campaign 

 High resolution RGB data 
Acquisition 

Done 

Multispectral data 
Acquisition 

Done 

Data field analysis  Done 

Data processing  Data preprocessing Done 

Data Annotation  N/A 

Data Augmentation N/A 

Development of crop 
modelling 

Prototyping Under development 

Testing the model Not yet started  

Development of production 
loss estimation algorithm 

Prototyping Not yet started 

Testing the model Not yet started 

 

Table 4.1. Overview of the progress of the tasks T3.2 & T3.3. 

 

4.6 Key Successes and Challenges 
Key Successes: 

• Data collected from different fields (test and calibration fields; different and large 
data with ground and remote sensing data) 
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• Preprocessing: ongoing 
• Annotation ongoing 
• Prototyping in progress 

Challenges: 
• Complex management of trials (different management and different crops) 
• Difficulty in finding collaborative farmers, particularly during pre-harvesting and 

harvesting periods over different management 
• Preprocessing and annotating our large dataset (ground data, remotely sensed 

data). 
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5. Automated fish egg sorting using multispectral 
camera technology in trout aquaculture (UNIVPM-
T3.4) 

 

Commodity: Aquaculture, case study in trout 

Food loss category: Production  

Technology: Machine learning to detect infected fish eggs using multispectral camera; 
automated sorting out of infected fish eggs 

Current stage: Proof of concept of multispectral system; Prototype of fish 

Desired outcome: Automated fish egg sorting system using multispectral imagery, 
machine learning and applied robotics.  

 

The  fisheries and aquaculture sectors have been increasingly recognized for their essential 
contribution to global food security and nutrition in the twenty-first century. Further 
expansion of this contribution requires the acceleration of transformative changes in policy, 
management, innovation and investment to achieve sustainable and equitable global 
fisheries and aquaculture.  
In 2019, the world trout production was 939878 tons (FAO) and has been increasing since 
2015 (+21 % in volume between 2015 and 2019). Main species farmed is the rainbow trout 
(Oncorhynchus mykiss) which accounted for 97 % of the total volume in 2019. The EU is the 
second largest producer in the world (183˙10³ tons in 2019: 20 % of world production). The 
rainbow trout farming industry has been developing for several hundred years, and many 
aspects are highly efficient, using well-established systems. However, current research and 
development is continually attempting to increase production efficiency and sales by 
increasing rearing densities, improving recirculation technology, developing genetically 
superior strains of fish for improved growth, controlling maturation and gender, improving 
diets, reducing phosphorous concentrations of effluents, and developing better marketing.  

 

5.1 Overview of the challenge  
 

The production cycle of rainbow trout can be divided into different phases, each 
characterized by important critical aspects that have to be considered to ensure high 
productivity rates and high-quality standards. As reported in the literature, the knowledge 
on the majority of these aspects has been deeply consolidated and this allows farmers to 
minimize losses in the supply chain. The most critical phase is represented by the early 
embryo development from fertilization to the achievement of the eyed egg stage, 
subjected to the absence of standard procedures or technologies designed to estimate 
losses. Fish egg loss due to fungal and bacterial infections represents the main issue in the 
entire productive cycle. Mortality during the incubation of eggs from a contamination by 
water molds (Saprolegnia spp.) and common aquatic pathogens ubiquitous in water 
results in annual production losses in the hatchery production of rainbow trout. The 
management of fungal and bacterial infections has historically relied on the use of chemical 
treatments which may have negative effects on human and environmental health. 
Currently, the early embryo development is characterized by the use of upwelling 
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incubators subjected to visual check, manual removal of dead embryos (white), and use of 
chemicals for disinfection of the whole batch. This is time-consuming and not sufficiently 
accurate to prevent spreading of bacteria and fungi (Figure 5.1). High rates of bacterial 
and fungal infection can result in the discard of whole egg batches (including healthy 
embryos), representing the main gap within the supply chain. Since oomycetes species like 
Saprolegnia sp. can colonize surface of the dead eggs to then suffocate the surrounding 
living ones, a constant and quick identification and removal of infected eggs is necessary. 
In fact, this step is characterized by the higher percentage of loss compared to the other 
steps (Δ ~ 20%) 

 

 

Figure 5.1. Representation of embryo development connected to food loss. Values are 
in %. Data from from Cardona et al 2021. Fish Physiol and Biochem 47, 671-679. 

https://doi.org/10.1007/s10695-020-00844-2 .   In light red the phase of interest for our 
task.1 

Fast and automatic identification and removal of whitish dead eggs in early developing 
trout embryos is needed to reduce microbial spread and avoid early food losses deriving 
from the whole batch discard. 
In this context, the T3.4 of FOLOU project aims to develop and validate an automatic system 
based on multi-spectral cameras that will be used to precociously identify, remove, and 
count dead embryos. In a preliminary stage, the collected images are labelled by domain 
experts and then used to train a deep learning model. In order to have a real evaluation of 
the dead eggs during the incubation period an optic system able to precociously recognize 
and move the dead whitish eggs will be developed.   
This device could improve up to 5% (but reaching 20% considering data from some 
publications) the number of eggs that pass the step 3 and achieve the eyed stage (less 
delicate), thus improving the productivity of the farming. This would lead to an increase, for 
example, in Italian rainbow trout production of 1723 tons (19%) and of 9190 tons at European 
level. 
 
 
 
 

 
1 Image modified from Cardona et al 2021. Fish Physiol and Biochem 47, 671-679. 
https://doi.org/10.1007/s10695-020-00844-2. 
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5.2  Data acquisition  
 

5.2.1 Material & equipment  
• Good and bad just-fertilized eggs were obtained from an Italian supplier; eggs were 

immediately fixed in Formol and stored at 4 °C until use.  
• Specific cameras (VIS and NIR) for images acquisition manufactured by XIMEA 

(VIS4x4 – NIR5x5) 
 

• Plastic material to develop prototypes of vertical trays using a specific cochlea to 
gently lift the embryos 

• Plastic beads of same weight and size of trout embryos to perform the preliminary 
tests. 

5.2.2 Protocol  
VIS-NIR acquisitions 
 
For preliminary VIS and NIR acquisitions, good and bad eggs were obtained from an 
Italian fish farm and placed on a net in a single layer with or without water (Figure 5.2). 

 

 
 

Figure 5.2. Good (orange) and bad (whitish) trout eggs. 

Through specific cameras the acquisition based on 4x4 and 5x5 VIS-NIR mosaic sensors 
(Error! Reference source not found.) was performed and data were verified by human 
experts. 
 
 
 



 

 
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not 
necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the 
European Union nor the granting authority can be held responsible for them. 

Page 49 of 70 

 
 

Figure 5.3. Example of VIS and NIR good and bad egg spectra. The top gives the image 
for three band waves, the bottom two figures the average reflectance over the 

different bands (left: visual camera; right: near-infrared camera) of good and bad 
eggs.  

 

. 

 

Incubation system 
A first prototype of the incubation system was developed and tested and is represented in  
Figure . 

 

 

Figure 5.4. First prototype of hatching system under development. 

However, this system was not particularly efficient in lifting the embryos and thus a second 
prototype was designed considering this problem. Specifically, it was evident from the first 
prototype that to efficiently lift the embryos a cochlea set up with a 45° angle was necessary. 
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Figure 5.5 shows the last prototype which was efficient in lifting the plastic beads and which 
is now under construction. 

 

 

Figure 5.5. Second prototype under development 

 

5.2.3 Outcomes of data acquisition  
 

VIS-NIR Acquisition 

Images are in tiff and png format 16 bit with multiple channels (15 VIS, 24 NIR). Results 
obtained from VIS/NIR acquisition were verified by trained human personnel and showed a 
proper sensitivity. Dataset of multi-spectral images of eggs were labelled over different 
classes (good, bad, uncertain).  

At present, a more extensive set of images is not yet ready since the second prototype is 
under development. 

 

5.2.4 Data preparation  
 

Originally, each camera produces a single image, with the different bandwidths measured 
in different pixels. This needs to converted in multispectral image tiles, in which each image 
represents a single bandwidth. This pre-processing step is called de-bayering and requires 
a complex algorithm that tries to generate multi-spectral image form snapshot sensors 
applying calibration coefficients provided by the manufacturer of color filter array (IMEC, 
Belgium). We apply also white and black calibration to have reflectance values instead of 
raw digital number. 

Images have been augmented using different data augmentation algorithms as: rotation, 
flip (vertical / horizontal), blurring. 

The main reason to use VIS-NIR camera was to evaluate the performance in the detection 
using VIS-NIR vs classical RGB or RGB with a modified set of filters. 
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5.3   Data annotation 
 

A preliminary set of images have been labelled from experts to train an object detection 
algorithm to detect eggs also providing a class (bad, good, uncertain). 

We used the labelbox platform. Figure 5.6 shows an example of labelling on acquired 
images. 

 

 

Figure 5.6. Data labelling through a web-based tool (Labelbox); the labelling was 
performed by experts. 

 

5.4 The proposed method  
 

The expected outcome is the development of a new system able to gently lift trout early 
developing embryos equipped with a set of cameras and specific tools able to recognize 
and fastly remove non-developing embryos.  

The deep learning approach relies on detection algorithms. We started by training a model 
based on You only look once (YOLO) algorithms; we used v5 and v8; augmentation was also 
used to increase the number of samples (rotation and flip). Models have been training using 
pre-trained models on State-of-the-Art dataset using transfer learning techniques. 

The overall welfare of egg batches incubated in the new incubation system will be 
compared to those incubated in standard systems. 

The models will be enriched using a wider set of images. Bad eggs will be removed using 
a mechanical system that will route good and bad eggs to dedicated collection areas. This 
step will be evaluated in the second prototype. 
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5.5   Expected outcomes 
 

The expected outcome is the development of a new system powered by artificial 
intelligence approaches able to gently lift trout early developing embryos equipped with a 
set of cameras and specific tools able to recognize and quickly remove non-developing 
embryos. Non-developing embryos are also a potential site for bacterial infections, from 
which also healthy eggs will be eventually infected. Hence, it is an important step in 
preventing production losses.   

The overall welfare of egg batched incubated in the new incubation system will be 
compared to those incubated in standard systems. 

5.6   Development state 
 

Main Tasks Subtasks State 

Data acquisition Good and bad egg samples 
collection 

Done 

Multispectral data 
Acquisition of good and 
bad eggs 

Done 

Data processing  Data preprocessing Done 

Data Annotation  In progress 

Data Augmentation   
 

In progress 

Development of object 
detection algorithms 

Prototyping 1st prototype developed, 2nd 
one under development 

Testing the model Not yet started  

Development of food loss 
estimation algorithm 

Prototyping Not yet started 

 

Table 5.1. Overview of the progress of Task 3.4. 

 
 

5.7  Key Successes and Challenges  
Key Successes: 

• Data collected with different cameras (RGB + multi-spectral) completed 1st run 
• Preprocessing: completed (1st run) 
• Annotation ongoing (done 1st run) 
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• Prototyping in progress 
Challenges: 

• Different design to properly manage the embryos avoiding mechanical 
stresses. 

• Preprocessing and annotating our large dataset (required expert) 
• Robustness to environmental conditions of embryos classification algorithm 

(e.g. light condition) 
 

 

 

 

 

  



 

 
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not 
necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the 
European Union nor the granting authority can be held responsible for them. 

Page 54 of 70 

6. Blockchain technology implementation in mussel 
aquaculture 

 
Commodity: mussels 

Food loss category: Production losses | Pre-harvest losses | Losses during Harvest  

Technology: Blockchain methodology for tracking food losses along the production chain 

Current stage: Under development: mussel datasets collected; blockchain methodology 
under development 

Desired outcome: Provide a decentralized digital platform based on blockchain technology 
capable of ensuring the non-repudiation and non-alterability of data regarding food loss. 

 

Aquaculture farming in the EU yielded an estimated 1.1 million tons of aquatic organisms in 
2021, corresponding to one quarter of the output of European fisheries as a whole. 
Particularly, mussels (Mytilus sp.) aquaculture reached alone about 40% of the total 
production in EU with Italy being the second European producer (Figure 6.1). 

 

 
 

Figure 6.1.  Main species in EU aquaculture production (%)2  

 
 

 

 
2 Source: EUROSTATS. Available at: 
 https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Aquaculture_statistics#EU_Aquaculture 
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6.1  Overview of the challenge  
 

To carry out an effective analysis and reduction of food loss phenomena along any food 
chain, it is essential to have detailed and reliable data. Of crucial importance is the non-
repudiation and non-alterability over time of the collected data , which require the use of 
appropriate technological tools. Blockchain technology provides a particularly suitable tool 
for this purpose, providing an unmodifiable decentralized digital platform that can be used 
as a pillar for the design and implementation of technological methods and solutions 
capable of ensuring the non-repudiation and non-alterability of data regarding food loss. 

The reduction of food losses in the first stages of the food production chain can be 
supported by the application of the cold chain, where the reference legislation for food 
products of animal origin is the Regulation (EC) No 853/2004. The regulation applies to the 
production and distribution of food of animal origin intended for human consumption. 

Blockchain technology, and in particular public blockchain infrastructures such as 
Ethereum, offer an unchangeable and persistent digital infrastructure to which the 
function of ensuring the integrity and immutability over time of collected data can be 
delegated. To take advantage of these features, however, it is necessary to set up a 
technological infrastructure to support the collection of data, its organization and, most 
importantly, its blockchain-based certification and the corresponding verification of 
certified data. 

To this end, a preliminary analysis was carried out to identify the most suitable technological 
solutions for application in the context of interest and for the intended use cases. The 
analysis performed has led to the definition of an architecture of the type schematically 
described in the Figure 6.2. 

 

The productive cycle of mussels can be affected by several factors that can represent 
potential sources of food loss. The acquisition of data from different variables during mussel 
farming can represent a suitable solution to provide data to monitor the productive cycle 
and possibly prevent and minimize food loss. However, this process is often endangered by 
the integrity of data themselves. Indeed, it can happen that data are either modified or 
purposely deleted. Or, analogously, it can happen that important pieces of information get 
lost because of malfunctioning of the used technology. For this reason, there is a crucial 
need for an efficient and secure way to store and certify data, aiming for data integrity and 
availability. Blockchain technology (or more in general, distributed ledgers technology) 
represents the perfect technological means to face this challenge. Blockchain technology, 
indeed, is a distributed ledger of records. The distributed nature of the blockchain 
technology guarantees data integrity since data, once inserted, cannot be modified or 
eliminated from it; blockchain, in fact, is defined as immutable. Moreover, the absence of 
single points of failure guarantees that data are always available. 

To validate this, the aim is to propose a blockchain-based platform to certify the data 
obtained during the analysis of a case study (mussel farm located in Senigallia, Marche, IT). 

Mussel (Mytilus galloprovincialis) aquaculture in the Adriatic Sea is environmental-friendly 
and does not significantly cause alterations in the marine ecosystem, both as functioning 
and trophic state. It represents a sustainable and relatively cost-effective way to produce 
seafood. Particularly, the rearing of Mytilus galloprovincialis is always extensive. The young 
mussels are collected from the sea and can be cultured on suspended ropes; these ropes, 
which are covered with mussel seeds kept in place by nylon nets, are suspended from 
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longlines of floating plastic buoys. Here, mussels increase in size until they reach the 
marketable size, feeding on the fine particulate organic matter (POM), including 
phytoplankton, bacteria, and organic detritus, from suspension in the water column around 
them. This form of rearing represents a great advantage in terms of cost for the farmers 
compared to finfish aquaculture but can be characterized by different drawbacks. 
Particularly, mussels are reared in the sea and can, thus, be exposed to: (i) eventual 
alterations of the water quality; (ii) adverse meteorological and marine conditions; (iii) 
presence of parasites or predators; (iv) they are sold alive and must be properly stored. In 
addition, during the productive cycle, mussels are not regularly inspected, but are 
periodically subjected to declumping and thinning procedures in relation to their growth 
rate, an activity that can cause damage to the shell. 

In addition, from the cold chain point of view, the temperature of storage and therefore of 
transport during the production phase are very relevant and it should be kept in the desired 
temperature range. The TOR (Time Out of Refrigeration), the maximum time that the 
product can spend out of the range of temperatures, could be a relevant parameter to be 
certified in the blockchain framework. The regulation (853/2004/CE) states: “Fishery 
products kept alive must be kept at a temperature and under conditions which do not 
affect food safety or their viability.” To be sold alive, during transport, mussels need to be 
stored at a temperature that prevents their death, between +4 and +6ºC. For this reason, 
the mussels must be exposed and stored in refrigerators other than those of fish, which 
must be stored at a temperature around 0ºC, from which it must be kept separated also to 
avoid bacterial contamination (cross contamination)3. Figure 6.3 shows the cold chain 
framework for shellfish. 

 

Figure 6.3.  Scheme of the methodology for control of the cold chain for mussels. 

 

 
3 Chemical, Gli obblighi dell’operatore per i Molluschi Bivalvi Vivi. (Available online: Gli obblighi dell’operatore 
per i Molluschi Bivalvi Vivi – Chemichal ), access on: 15 December 2023 



 

 
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not 
necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the 
European Union nor the granting authority can be held responsible for them. 

Page 57 of 70 

6.2  Data acquisition  
 

6.2.1 Material & equipment  
 

• Agreement with company (Sena Gallica Soc. Cooperativa, Senigallia, IT) 
• Identification of 3 sampling sites within the mussel farm that were sampled in 4 key-

times during the productive cycle, with emphasis on the market size. 
• Mussels' samples for laboratory analysis including total weight, single animal weight 

and length, edible part %, presence of parasites, dead specimens vs alive ones 
• Prototype: an IoT device (currently under development) to measure the growing rate 

A blockchain-based platform used to certify data. Special focus on the certification of the 
different processes involved in the use-case related to mussel aquaculture.  

Sampling sites within the farm were named Small, Medium, and Big according to 
the size of the seeds at the beginning of the productive cycle (Figure 6.4). The Small site was 
the closest to the coastline. 

 

Figure 6.4. Sampling sites within the farm named Small, Medium, and Big according   to the size of the 

seeds at the beginning of the productive cycle. Cyan and orange areas are out of the scope of sampling 

protocol due to a different management). Yellow color represents the useful area for our task.These 
sites were sampled in different times of the productive cycle (from pre-harvest to harvest) 
to determine the mortality and the growth parameters of mussels. Particularly, 3 one-meter 
samples from each site were obtained at (i) Settlement (July 2023; pre-harvest); (ii) 
Intermediate sampling (November 2023; pre-harvest); (iii) Market Size (February 2024; 
Harvest 1 – only Medium and Big sites); Product for summer season (April 2024; Harvest 2 – 
only Small site).  

Harvest 1 - From each one-meter sample (Figure 6.5) collected in the Small, Medium, and 
Big sites, alive and dead specimens were counted and weighted in light to measure the 
production in terms of alive biomass per sample and to obtain the mortality rate (%). In 
addition, on 20 specimens per one-meter sample (60 specimens per site at each sampling 
time), individual parameters were measured: length, total wet weight, wet weight of the 
edible part, dry weight of the edible part, shell thickness.  

In addition, the presence of mussel predators (flatworms of the class Turbellaria; Figure 
6.6) was assessed and the number of alive specimens per one-meter sample was 
recorded. 
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Figure 6.5.  Details of measurements on mussels. (a) example of a one-meter sample; 
(b) individual length; (c) individual total wet weight 

 

Figure 6.6.  Example of flatworms found alive within mussels' sample 

Harvest 2. Differently from mussels from Harvest 1 that are sold as they are since the shell 
does not have a proper thickness for the cleaning procedures, those from Harvest 2, can be 
cleaned due to proper shell thickness, a procedure that can possibly add another source of 
food loss. For that reason, the whole socks were weighted as they are and then were cleaned 
resulting in the separation of: (i) cleaned sellable product at market size; (ii) dead mussels 
at market size; (iii) dead smaller mussels and fouling; (iv) mussels’ seed (recovered by the 
farmers as a stock for a new production); (v) sand; (vi) plastic nets. The cleaned sellable 
product was analysed following the same protocol reported for Harvest 1. In addition, the 
number of mussels broken by the cleaning procedure (Figure 6.7) was measured.  
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Figure 6.7. Examples of damaged mussels after the cleaning procedure at Harvest 2 

Data obtained from the samplings will be coupled with data obtained from the: (i) normal 
operations of farm maintenance; (ii) harvesting of the final product; (iii) transport conditions 
(i.e. cold chain, packaging); (iv) meteorological and marine data obtained by the station 
located near the farm; (v) the IoT device for measuring the growing rate; (vi) installation of a 
tracking device to monitor the vessel position and temperature.  

6.2.2 Outcome of data acquisition  
 

• Weight and number of alive and dead mussels at each sampling site during the 
productive cycle to meet the project goals; emphasis was given to the food losses at 
harvest (commercial size; Harvest 1 and Harvest 2). 

• Number of mussels broken by the cleaning procedure to compare the two 
harvesting procedures (Harvest 1 and Harvest 2). In terms of food loss. 

• Weather data collected by data buoy managed by National Council of Research 
(CNR) 

• Blockchain to guarantee integrity and certification of acquired data. 
 

6.2.3 Data preparation  
 

Data of measurements conducted on mussels’ samples were analyzed to remove 
eventual outliers. Results were then expressed as mean ± standard deviation. 

 

6.3   Data annotation 
 

• Data on total productivity of the farm: excel file provided by the farmers 
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• Data of measurements conducted on mussels’ samples: excel file provided by the 
UNIVPM team 

• Blockchain data certification and verification 

 

6.4 The proposed method  
 

 

 

Figure 6.2. Scheme of the proposed blockchain-based architecture for data 
certification. 

 

The designed architecture is based on a central component, consisting of an off-chain 
server equipped with storage capacity for the data to be collected and certified, as well as 
capacity to execute the cryptographic functions required for their certification. Such a 
central server is expected to perform the following core functions: 

• Expose API (Application Program Interface) functions to enable the collection of 
data from several possible sources. It is expected that, for example, such sources may 
be represented by web interfaces (usable from computers or via smartphone apps) 
for manual entry, or cyber-physical devices for automated collection. 

• Perform cryptographic functions to compute certification data derived from the 
data itself, which enable certification and integrity of collected data to be ensured, 
without including the data itself. 

• Interface with a public blockchain (such as Ethereum) to perform writing of 
certification data to ensure its persistence and immutability, without disclosing the 
collected data. 

Once the collection and blockchain-based certification of data has been carried out, anyone 
who comes into possession of the certified data and the related certification information 
can verify its correctness directly. This can be done by querying the central server again, or 
in an entirely decentralized manner, via functions executed locally. 
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Data are also collected through a data buoy managed and maintained by the National 
Council of Research (CNR) – IRBIM4.  

The data collected during the mussel aquaculture case study will be used to test the 
blockchain-based platform for certifying data. The aim, in fact, is to address the problem of 
certification and data traceability by identifying an architecture that can exploit the 
inherent advantages of distributed ledger technologies. 

In the proposed architecture, data to be certified can come from different sources, such as 
embedded devices, mobile apps, or web interfaces, as previously shown in Figure 6.2. These 
data of different types (i.e., strings, files, pictures, etc.) can be uploaded by users on a 
dedicated database through some ad-hoc application. Then, some processing needs to be 
done between the database, containing the information to be certified, and the public 
blockchain (i.e., Ethereum), to immutably notarize data. 

To this aim, an innovative solution based on the use of Merkle trees for organizing pieces of 
information is proposed. The primary goal of this approach is to limit the number of 
blockchain transactions to be generated, making the certification process more efficient 
and cost-effective. The idea is to independently consider data coming from different 
sources and organize them into Merkle trees, whose numerosity (i.e., the number of leaves) 
is a design choice that considers various factors aimed at minimizing costs. Merkle trees are 
data compressing structures (see Figure 6.8).  

Exploiting this structure, the data to be certified are compressed using a hashing algorithm 
(i.e., SHA256) and then placed in a leaf. The tree is then built from the leaves to the root by 
applying the SHA256 compression to the concatenation of each pair of successive leaves. 
Then the upper nodes, obtained from this compression step, are again compressed in the 
same way. This process continues until the root (i.e., merkle root) of the tree is reached. The 
resulting hash digest is the compressed representation of all the leaves and will therefore 
be the only data stored on the blockchain. 

 

Figure 6.8. Merkle tree structure. 

 
4 http://rmm.an.irbim.cnr.it/index.php/meda-senigallia (last access March 2024) 

http://rmm.an.irbim.cnr.it/index.php/meda-senigallia
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Since compression is not invertible, to verify that one piece of information is not modified 
after the certification, a set of node values needs to be extracted from the tree to test the 
integrity of the document. Through the so called Merkle Proof, indeed, it is possible to 
demonstrate that data in a leaf have not been modified. 

The certification process is summarized in Figure 6.9. Initially, data that need to be certified 
are grouped together in a waiting queue and, after a pre-defined amount of time, the 
certification process begins. Basically, these grouped data are used as leaves to build the 
Merkle Tree and the Merkle root is computed. While the tree is stored in an off-chain 
database, the Merkle root is sent to the blockchain through a transaction. Transaction 
information is stored in the off-chain database as well, together with all the information that 
allows the verification process (e.g., the Merkle proof). 

 

Figure 6.9. Scheme of the certification process. 

When a user needs to verify a document, the proof is extracted from the off-chain database. 
Then, the transaction that contains the in-chain root needs to be located in order to start 
the actual verification function, which includes the following operations: 

1. calculate the hash of the file, 
2. extract the root from the blockchain, 
3. locally calculate the root through the proof and the hash found in step 1), 
4. compare the values obtained in steps 2) and 3); in case of equality, the verification is 

successful. 

The user will have the possibility to upload data and to verify them through an easy interface 
that will show, for example, if data are in queue or certified, or if the considered data has 
maintained their integrity or not. 

The proposed blockchain-based architecture gives some useful properties: 

• Certification via blockchain: 
o data are certified via blockchain transactions 
o Data integrity depends on the security of the employed blockchain 
o Data can be easily and securely verified (thanks to fast cryptographic 

functions) 
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o When an IoT Device is used, human actions are not required 
• Off-chain database (e.g., MongoDB): 

o Heterogeneous data (several formats and sources) 
o Database is responsible for data maintenance 
o Different solutions for data certification (single vs multiple data) 

• User-friendly interface: 
o Updating data can be done in a few steps 
o Verifying data integrity can be done is a few steps 

The proposed blockchain-based architecture will be validated using the mussels 
aquaculture case study data. An example of a simple prototype for this application is shown 
in Figure 6.10. 

 

 

 

 

 

Figure 6.10.  Left: Example of data input interface. Right: Example of data certification 
process. 

 

 

6.5  Expected outcomes  
 

The expected outcome is the development of a blockchain-based platform to certify data 
and to guarantee their integrity. This application can be used to efficiently store data related 
to food processing and, eventually, food losses. The platform will be tailored to the case 
study on mussel aquaculture. However, the method and blockchain architecture can be 
potentially applied to any commodity.    
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6.6 Development state 
 

Main Tasks Subtasks State 

Field campaign   Data Acquisition on  
mussels production during 
a whole productive cycle  

Done 

Data Acquisition on 
mussels pre harvest, 
harvest food losses 

Done 

Data field analysis  Done 

Data processing  Data preprocessing on 
mussels  

Done 

Cryptographic certification 
algorithm design 

Done 

Data Annotation on  
mussels 

In progress  

Data Augmentation   
 

In progress 

Development of  the 
blockchain-based platform 
for data certification 

Prototyping Under development 

Testing Not yet started  

Development of food loss 
estimation algorithm 

… ….. 

Table 6.1. Overview of the progress of Task 3.5. 

 

6.7 Key Successes and Challenges  
Key Successes: 

• Data collected over 1 aquaculture field over 1 season 
• Preprocessing: completed 
• Data Analysis: completed 
• Blockchain platform: in progress 

Challenges: 
• Acquisition of samples and their processing takes time. 
• Reduction of Blockchain and (big) data certification complexity 
• Increase of temporal resolution  
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7. Market demand tools from social networks (T3.6, 
CIRCE) 

 
7.1   Overview of the challenge  

 

Commodity: : Grain and pulses (pasta), fruits and vegetables (tomato), root tubers and oil 
crops (olive oil), meat and animal derived products (pork), and fish(hake). 

Food loss category: Surplus: rough forecasts of food demand limit the efficiency of the 
supply chain. 

Technology: Natural language processing for messages from social networks, and machine 
learning to model actual consumption based on text features. 

Current stage: Under development: data acquired for food consumption, data annotation 
and modeling in progress.  

Desired outcome: Models to predict food consumption based on messages from social 
networks. 

 

Predicting customer behavior is crucial for reducing food loss in production, retail and 
hospitality. Advanced analytics, including natural language processing (NLP) and machine 
learning (AI), can estimate food consumption based on social media messages. This 
approach helps adapt the production, optimize inventory, reducing overstocking and 
minimizing waste. The development analyzes five Spanish commodities: grains and pulses, 
fruits and vegetables, root tubers and oil crops, meat and animal products, and fish. 
Different input features and algorithms are studied to improve the accuracy of 
consumption models. By understanding consumption patterns, businesses can better align 
production and supply with demand, enhancing product availability, reducing spoilage, 
and improving operational efficiency. Moreover, the demand forecasts can be compared to 
supply information to identify potential food surplus and quantify food loss. 

 

7.2   Data acquisition  
 

Information is collected for the case of Spain between 2018 and 2023, from web data sources 
with open access via web. Food products (pasta, tomato, olive oil, pork and hake) were 
selected due to its importance in Spanish consumption.  

 

7.2.1 Material & equipment  
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Social messages: Messages from the social network X (formerly Twitter) are collected from 
the Internet Archive. This digital library provides a sample of all the messages published 
worldwide between 2011 and 2023. Text messages and their creation timestamp are 
grouped in a file structure of months, days, hours and minutes. 

Queries to search engine: Apart from social networks, popularity is studied based on queries 
to the search engine Google. Google Trends computes a quantitative variable of search 
interest in time series format, between 2004 and nowadays.  

Food consumption: Domestic food consumption in Spain was acquired from the Spanish 
Ministry of Agriculture, Fisheries and Food (MAPA). This government department provides 
yearly and monthly information from 1990 to 2023, characterized by food, region, socio-
demographic profile and sales channel. Besides MAPA, complementary data was acquired 
from other free official entities: Spanish National Statistics Institute (INE), European Food 
Safety Authority (EFSA) and Food and Agriculture Organization of the United Nations (FAO). 

 

7.2.2 Protocol  
 

All the data sources are open access via web, and data for the time period between 2018 
and 2023 is manually downloaded on local servers for further processing. Social messages 
are stored in up to 105 compressed JSON files, which are automatically decompressed by a 
Python script. Search interest was exported in a single CSV file per food, while data about 
food consumption was saved in a XLSX file per year.  

 

7.2.3 Outcomes of data acquisition  
 

The data acquired from each data source is summarized in                      

Table 7.1.  

 

Source Data type Size of collected dataset 

X Social messages 17 TB of decompressed files 
(3500 million of messages) 

Google Trends Search interest 72 samples per food 

MAPA Food consumption 72 samples per food 

                     

Table 7.1. Summary of the data collected from each source. 

 

7.2.4 Data preparation  
 

The dataset of social messages includes texts for additional topics other than food, written 
in multiple languages. Thus, relevant messages are filtered using Spanish hashtags 



 

 
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not 
necessarily reflect those of the European Union or the European Research Executive Agency (REA). Neither the 
European Union nor the granting authority can be held responsible for them. 

Page 67 of 70 

for the considered foods. Data about food consumption was manually selected to handle 
inconsistencies in food names and categories.  

The consumption datasets of the four food entities (MAPA, INE, EFSA and FAO) were 
organized creating a relational database, promoting its normalization, elimination of 
redundancy and prevention of cyclic dependencies. Variables were encoded, date formats 
were parsed, measurement units were normalized, and additional features and implicit 
information were extracted.  

 

 

7.3    Data annotation 
 

Social messages, search interest and food consumption are labelled with their 
corresponding timestamp, enabling their comparison. For example, Figure 7.1 shows the 
consumption and search interest for tomato in Spain, between 2021 and 2023. A model of 
sentiment analysis evaluated for X (XLM-T) is applied, providing three emotion scores 
(positive, neutral and negative) for each user text.  

 

 

Figure 7.1. Consumption and search interest for tomato in Spain, between 2021 and 
2023. 

 

7.4 The proposed method  
 

To match the granularity of search interest and food consumption, monthly features will 
be extracted from the social messages, including text number and average emotion. Official 
food news will be analyzed to study their relationship with social messages and search 
interest. Food consumption will be studied with time series methods, such as moving 
average and autoregressive integrated moving average. Machine learning algorithms will 
be used to predict food consumption based on social messages and search interest. The 
accuracy of the models will be evaluated for training and test subsets, analyzing different 
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social features and learning algorithms, as support vector machines and multilayer 
perceptron. 

 

7.5   Expected outcomes  
 

This development will provide models to estimate consumption based on social networks 
for five foods, using Spanish data between 2018 and 2023. With that purpose, techniques of 
natural language processing and machine learning are applied.  

Conventional techniques to monitor food consumption provide measures with delay, 
which can reach several months in some cases. By employing dynamic data generated in 
social networks, the developed models can be used to provide an earlier estimation of food 
consumption and demand. Moreover, the demand forecasts can be compared to supply 
information to identify food surplus and quantify food loss. 

 

7.6  Development stages 
 

Main Tasks Subtasks State 

Data acquisition Social messages  In progress 

Search interest Done 

Food consumption  Done 

Data annotation  Sentiment analysis of 
messages 

In progress 

Data modelling Monthly characterization of 
messages 

Not started 

Time series analysis of food 
consumption 

Not started 

Estimation of food 
consumption based on 
social data 

In progress 

 

Table 7.2. Overview of the progress of Task 3.6. 

 

 
7.7Key successes and challenges 

 

To conclude, the key successes and challenges of the activities performed until June 2024 
are presented below. 
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Key successes:  

• End of data acquisition for search interest and food consumption 
• Start of data acquisition and processing for social messages 
• Start of consumption modeling based on social data 

Challenges:  

• Policy changes of X and the limitation of alternatives to collect social messages 
• High volume of social messages to access and filter 
• Lack of standardization of consumption data 
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Conclusion 
 

The current report offers a technical overview of the diverse methodologies and approaches 
currently being implemented and developed in Work Package 3 of the FOLOU project. This 
work package has significantly advanced the handling of critical food loss challenges within 
various agricultural commodities. Innovations include the deployment of high-resolution 
UAVs and multispectral imaging coupled with AI  for precise food loss estimation, crop 
modelling for production loss, the application of blockchain technology for reliable tracking 
of food loss throughout the supply chain, and the analysis of consumer food trends on social 
media to better predict food production needs. all methods are presently under 
development and have demonstrated promising progress by successfully confirming the 
first key milestones. Next step for most the tasks will be finishing the annotation, analyzing 
the data, and successfully implement the first protypes of the models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


